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AFIT/GE-93D-05

Abstract

I. satellite analysis, it is often necessary to determine the attitude of a satellite from
a two dimensional image of the satellite. This thesis describes work performed to determine
the attitude of a satellite relative to a reference position. The attitude is described in terms
of the scaling, rotation and translation of the reference that will result in a pose that can be
projected to form the image of interest. The techniques used are based on finding coefficients
for the linear combination of basis images and decomposition of a composite transformation
matrix. The methods were initially modeled in Mathematica and applied to simple objects,
then implemented on a Silicon Graphics Workstation and applied to a model of an actual
satellite. An accurate estimate of the pose of a satellite in a 2D image can be estimated
based on the information contained in the image and a 3D model of the satellite or a set
of images of the satellite at known orientations. Results of a performance analysis of the
SGI implementation, a user’s guide, source code in Mathematica and a software reference

are included.

ix




SATELLITE ATTITUDE DETERMINATION USING
LINEAR COMBINATION OF MODELS

I. Introduction
1.1 Background

Mankind’s exploitation of space through the use of satellites has brought many benefits.
From their high altitude orbits, they observe the earth and relay data to their masters.
Earth, unfortunately, is a planet of many masters. Each of these masters has a keen interest
in observing the activities of not only their own satellites, but those belonging to others as

well.

An important aspect in the observation of satellites is the determination of attitude.
A satellite’s attitude or orientation in space provides many clues to its mission. From atti-
tude information, the aiming of antennas, sensors, or thrusters may be determined. Then,
combining attitude and location data, one can make an educated guess at what it is looking,

and/or to whom it is talking.

Satellite observations can include imagery collected from the ground. In some cases,
this may be the only data available. An analyst is then faced with estimating the orienta-
tion of a three-dimensional object in three-dimensional space from a two-dimensional image.
While rough estimates are possible (for example, “it is pointing down”), more precise esti-
mates (“it is pointing down at 63°”) are difficult. A tool for making precise estimates could

be very useful.

This thesis will show that it is possible to make a precise estimate of the orientation

of a known object, in this case a satellite, shown in a two-dimensional image.




1.2 Problem Statement

This research focuses on creating a computerized aid for precisely estimating the at-
titude of a satellite represented in a two-dimensional image. The tool requires a base of
information about the object of interest. In this case, the information is in the form of a 3D
geometric model of the object. The tool can manipulate the model to create views of the ob-
ject at arbitrary orientations, forming basis images and simulated sensor images from which
recognition and attitude determination can be performed. The basis images and information
about the attitude of the object in them provide sufficient information for recognition and

determination of attitude in the simulated sensor image.

1.3 Scope

This research is based on Ullman and Basri’s work in depicting and recognizing objects
as linear combinations of models (13). Although this thesis is closely related to and discusses
recognition, it is important to note that the focus of this research is not the recognition
of objects. Rather, this work addresses the steps subsequent to recognition in which the

orientation of the object is determined.

A basic assumption throughout this thesis is that the identity of the object is known.
In many applications, this assumption is not unreasonable. In this particular application, the
identity of the satellite can be determined from intelligence and ephemeris data on specific
satellites. This being the case, the recognition portions of the algorithm were tested under
relatively benign conditions. No attempt was made to fool the system by presenting an

unexpected object or distorted views.

Additional assumptions include the structure of the object. Here it is assumed that
the object has at least four distinct points or vertices that can be seen at most orientations.
These vertices are selected beforehand and used as alignment points. Since the main criteria
for selection of the alignment points is that they are in general position, their choice is almost
arbitrary, and this assumption is valid for most objects. Additionally, the human operator

is assumed to be able to estimate the position of hidden vertices.




The use of distinct vertices as alignment points may cause problems with objects
where suitable vertices are not available. Such is the case with objects containing mostly
curved surfaces, for instance, a Volkswagen Beetle. In their work, Ullman and Basri address
the application of linear combination principles to objects with curved surfaces (13). The
techniques described in this thesis can be extended to include objects of this type, but such

an extension is deemed beyond the scope of this thesis.

The linear combination principles apply to 2D orthographic projections of 3D objects.
Imaging sensors produce perspective projections. Orthographic projections produce images
of an object without distortions due to size or distance, whereas perspective projections
mimic the images formed by the human eye (3). In perspective projections, distant objects
appear smaller than close objects of the same size. A more detailed discussion of the differ-
ences between orthographic and perspective projections is included in Chapter II. For the
purposes of this thesis, it is assumed that orthographic projections closely approximate per-

spective projections. This assumption is valid given the scale of the objects being considered.

The location of the observer is also assumed to be known. Orientations will be deter-
mined in a frame of reference defined with respect to the observer and a 3D reference model.

Transformations to other known frames of reference are then possible.

1.4 Methodology

This project was approached in two stages. First, the algorithms were modeled in
Mathematica and tested on a simple object. Second, the process was implemented on a

Silicon Graphics workstation and tested with a detailed model of a real satellite.

The first task of the modeling stage is the generation of a simple object that could be
easily manipulated and transformed. This object, called four is shown in Figure 1. Next, it is
verified that arbitrary 2D views the object can indeed be represented as linear combinations
of 2D basis views, and that the coefficients used in the combination can be found analytically.
The utility of the coefficients for identification is demonstrated, as described by Ullman and

Basri. The method for determining the coefficients described by Ullman and Basri is modified




Figure 1. Simple object used in Mathematica modeling.

to work in four-dimensional homogeneous coordinates. 4D homogeneous coordinates were
used so that all rigid transformations of the object (rotation about each axis, scaling, and
translation) were considered. A method for determining the orientation of the objects from
the coefficients is then devised. The method is tested to see if it can determine the attitude
of the test obj‘ect posed at random orientations. Mathematica was chosen because of its
flexibility and support by many platforms. This portion of the project was run mainly on
Apple Macintosh and NeXT computers. A complete printout of the Mathematica code is
included as Appendix B.

Once the basic principles were tested, implementation on the Silicon Graphics work-
station began. A constructive solid geometry model of the Defense Meterological Satellite
(DMSP) satellite was obtained from the Philips Laboratory Satellite Assessment Center.

New software to display and manipulate the model was necessary because of format of the




model data and the requirements of the attitude determination software. The attitude de-
termination software and graphical user interface were then built and tested with random
poses of the satellite. A user’s guide (Appendix A) and software reference (Appendix C) are

included as appendices.

1.5 OQverview of Thesis
This thesis is broken down into the following chapters:

Chapter II begins with a description of the representation and transformation of an
object in 4D homogeneous coordinates. It then discusses the basics of Ullman and Basri’s
approach to linear combinations of models. Previous applications of the technique for recog-

nition and image registration are briefly discussed.

Chapter III presents the specific techniques used in this application, including the
generalization of the linear combination theory to encompass 4D homogeneous coordinates
and all rigid transformations, determination of coeflicients for the linear combination, and
extraction of orientation information from the coeflicients using Newton’s method. Discussed

in detail are the modeling performed in Mathematica and the SGI implementation.

Chapter IV provides the results of a qualitative performance analysis done on the SGI

implementation of the attitude determination system.

Chapter V summarizes the results of the thesis and briefly discusses limitations of and
new questions raised by the thesis, which may provide possibilities for future work on this

topic.

The appendices include a software user’s guide, and listings of the relevant Mathematica

code, and a software technical guide.




II. Current Knowledge

2.1 Introduction

Determination of satellite attitude combines elements from computergraphics and ar-
tificial intelligence (Al) (3) (15). In order to achieve a useful blending of the two fields, an

understanding of each is required.

The task embodies elements of Al in that it combines a broad range of information
to solve a particular problem (15). Specifically, it combines information about the structure
of an object, the way it looks in representative 2D views, and how rigid objects move and
rotate in 3D space to estimate the object’s attitude. The actual mechanisms by which the
information is combined and manipulated are most often encountered in the field of computer

graphics.

This chapter describes how objects are represented and manipulated in computer
graphics. It then discusses Ullman and Basri’s approach to image formation by the linear
combination of basis images. Finally, it provides a brief overview of how the linear combina-
tion approach has been employed in the recognition of objects, and the use of transformation

matrices for related applications.

2.2 Transformation in Homogeneous Coordinates

A three-dimensional object can be described by polygons that approximate its surfaces
¢. lines that depict its edges. In either case, the description requires a series of points in
three-dimensional space, where the points are the vertices of the polygons or the endpoints of
the lines. Each point is described by a coordinate triple. Conventionally, the triple contains
the z—, y— and 2—coordinates of the point in a Cartesian system, although cylindrical or

spherical coordinates may be used.

Most transformations of concern here, specifically scaling and rotation, are linear trans-

formations of a point in space. These transformations can be performed by writing the point




as a position row vector, and multiplying by an appropriate 3 x 3 transformation matrix.

p=pT

where p and p are vector triples of the new and old positions, respectively, and T is the

transformation matrix.

Transformations that can be performed in this fashion include scaling and rotation

about each axis using the following matrices:

s, 0 0
S=10 s, 0
0 0 s,

1 0 0

R.=10 cosf, sind,

0 —sinf, cosé,

cosfd, 0 —sind,

R=| 0 1 0

sinf, 0 cosé,

e ol

cos@, sinf, 0
R, =| —sinf, cosf, 0

0 0 1

- o

where s,, s,, and s, are the scale factors and 6., 6,, and 8. are the angles of rotation
measured counterclockwise. Note that an object can be scaled by different amounts in each
direction. This results in a warping effect and does not happen to non-deformable objects.
For the purposes of this thesis, scaling will be restricted so that s, = s, = 5, = 5. All
transformations are performed with respect to the origin, anc their matrix representations

are always with respect to the standard Caifssian basis.




Figure 2. A translation transformation.

This set of transformations is, however, incomplete. Translations, or sliding movement
without rotation or scaling (Figure 2) must be done by the addition of each translation

amount to each coordinate.

p=p+Lp

In order to allow transformations to be performed via matrix multiplication, a system
of four-dimensional homogeneous coordinates is used (3). The 3D point is represented by
a four element vector, (z,y,z, W). In this representation, (z,y, 2, W) and (2, ¢/, 2', W') are
the same point if and only if each element in one vector is a multiple of the corresponding
element in the other. Thus the point (2,4,5) can be represented by both (2,4,5,1) and
(4,8,10,2).

When W is non-zero, the 4D point p can be homogenized to py by dividing through
by W:

(X Y z
pH - (Wa Wv W’l)




Thus, a point is represented in homogeneous coordinates by simply adding a fourth coordi-

nate of 1.

For 4D homogeneous coordinates, the transformation matrices are

s, 0 O
S 0 s, O
0 0 s, O
0 0 0 1
(1 0 0 0]
0 cos#, sinf, O
R, =
0 —sinf, cosf, 0
| 0 0 0 1
Pcos0,, 0 -—siné, 0]
R, = 0 1 0 0
sin, 0 cosé,
| 0 0 0 1]
[ cosf, sinf, O O-
—sinf, cos@, 0 O
R, =
0 0 10
0 0 01
(1 0 0 0]
01 00
T =
0 010
Lttt 1

where s., s,, and s; and 6., 8, and 6, are defined as above, and t., t,, and t, are the

translations along the z—, y—, and z— axes.




A complicated transformation can be performed by a series of n simple transformations

of-the types listed above.
p=pN\7Ts---T,

The matrices can be combined to form a composite transformation matrix, T, such

that

p=pT,

where

Tc = TszTa L T,.. (l)

2.3 Projection in to 2D Images

The transformed points are then projected into a two-dimensional spaceto form an im-
age. There are many ways to perform the projection. They fall basically into two categories:
perspective and parallel (3). Perspective projections mimic the photographic systems and
human vision. Objects at a distance appear smaller than an object of the same size that
is closer, an effect called perspective foreshortening (3). Parallel projections are less realis-
tic, but much easier to perform. Additionally, objects always appear to be the same size,
regardless of distance, in parallel projections. The effect of distance can be simulated by
introducing a scaling factor, to make distant objects appear smaller. In the special case of
parallel projection that is employed here, the coordinates along the axes perpendicular to the
projection plane is simply discarded. For projection into the zy plane, the z—coordinate and
W are discarded. This is known as an orthographic projection. Single point perspective
and orthographic projections of a familiar sight, railroad tracks, are compared in Figure 3.

The perspective effect is exaggerated for clarity.

For objects and views of concern in this project, the orthographic and perspective views
will be almost indistinguishable. Figure 4 shows the object four projected in perspective and

orthographic. Besides the frames, which are not part of the image, the images are almost

identical.




perspective orthographic
Figure 3. Perspective vs. orthographic projections.

2.4 Linear Combination of Models

Given a 3D model and using the methods outlined above, one can readily create a 2D
image of the object at any pose. It is less obvious, however, that the 2D image of the object
at an arbitrary pose can be generated from a collection of 2D images of the same object at
other poses. The collection of images from which a new image is made are called the basis
images. Notionally, the new image is then formed from the linear combination of the basis
images.

-~

P=cqP,+cPy+c3P3+--+cnPp

where P is the new image and P;, i = 1...m are m basis images. The image, P, takes the
form of an n x 2 array whose rows are the r, y coordinate pairs of each of n points of interest

on the object.

Ullman and Basri show that for the general case of rotation, translation and scaling
in 3D space, an image of a rigid object can be expressed as a linear combination of four
views of an object. Three of the four views must be independent, and the fourth may be
derived from those three. The following is extracted from their proofs in Recognition by

Linear Combination of Models (13):

11
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perspective orthographic

Figure 4. Perspective and orthographic projections of four.

Let O be a set of 3D points representing an object. Let P;, P, and P; be three
images of the object generated by applying the 3 x 3 rotational (containing only
rotations) transformation matrices R, S, and T to O. Let P be a fourth image
of the same object obtained by applying the 3 x 3 transformation matrix U to
O. Let vy, 84, t;, and u; be the first column vectors of R, S, T, and U, and
let r,, 37, 5, and us be the second column vectors of R, S, T, and U. The
positions of a point p = (z,y, 2) such that p € O in the four images are given
by:

P = (z,m) = (pri,pra)

P, = (22,32) = (ps1,ps2)

ps = (z3,43) = (pt,pty)

-

P = (£,9) = (pui,pug)

Claim: If both sets {r;,s;,t;} and {ry,8,t5} are linearly independent, then
there exist scalars a), aq, a3, b;, by, and b3 such that for every p € O it holds
that:

1<)

T= a;T) + ayx9 + azx;
¥ = biyr + boye + bays

Proof: {r1,8,t,} are linearly independent. Therefore, they span R3, and there
exist scalars a;, as, and a3 such that:

Uu; = a1 + a8, + a3zt (3)

12




Transforming p by U gives &:
T =puy,
Substituting (3) and multiplying by p, it follows that:

T = pa)r; + pay8, + past,
From (2):
I =ar) +ayx9 + azzrs
Similarly:
9 = biyr + baya + bays

Therefore, an image of an object undergoing rotation in 3D space is a linear
combination of three basis images.

To consider scaling and translation, let the fourth image, P be further trans-
formed by a scale factor, s and the translation vector (t,,t,). For any p € O:

-~

P = (£,9) = (spuy +t.,spus +t,) (4)

Points p;, ps, and p;3 remain as defined in (2).

Claim: If both sets {r,8,,t;} and {ry,82,t2} are linearly independent, then
there exist scalars a,, as, a3, as, b;, b, b3, and b4 such that for every p € O it

holds that:
T =a1Z; + aT9 + a3x3 + a4

§ = biyr + baya + b3yz + by
Proof: From above, it holds that there exist scalars ¢, ¢o, and ¢35 such that:

u; = 7 + €28 + c3ty. (5)

Since
j" = spul + t:n

substituting (5) gives
I = spciry + spces, + spcsty + ;.

From (2), (4), and letting

a = 8¢
Ay = 8C
a = Sc3
ag = 1,

it follows that
T = a2 + ayxy + azx3 + a4.

13




Similarly, for gy,
¥ = biyy + baya + bays + by.

Therefore, an image of an object undergoing rigid transformations in 3D space
is a linear combination using four coefficient pairs.

Ullman and Basri’s proofs were based on 3D triplet representations of points. They
also state that 4D homogeneous coordinate representations and transformations require four
model images, three of which must be different, and a fourth which can be derived from the

other three (13).

Note that in the proofs, the determination of x and y coordinates is done indepen-
dently. This distinction is important, as it results in different coefficients, a; and b;, in each
dimension. As a consequence, there exists a large system of simultaneous equations that

must be satisfied to determine orientation from the coefficients.

A direct result of the creation of a new image from basis images is that only a small
number of images need to be stored, rather than an entire 3D model. An additional result
is that the linear combination technique can be used for recognition. Suppose that instead
of generating a new image, a new image consists of the observation of an object. If the new
image can be expressed as the linear combination of the basis images, and the coefficients a;
and b; meet certain criteria, then the new image is an instance of the object represented in

the basis images.

The necessary conditions for recognition by the coefficients are:

| @17y + az81 + a3ty || =1
" bire + by8e + b3ty “ =1 (6)
(0,11'1 + a8, + a3t1) (b11‘2 + bysy + b3t2) =0

Ullman and Basri propose three methods for determining the coefficients each designed
to minimize the difference between the unknown view and the view generated from the linear

combination. One method employs corresponding features in both the model and the image.

14




The second involves an iterative search of the coeflicient space. Lastly, the third method uses

linear receptive fields to map different views of the same object into a common representation.

In this thesis, the first method was used. Conspicuous vertices of the model are used
as alignment points. The transformation of each of these points from the basis images to

their corresponding location in the unknown view is a function of the coefficients.

The z— and y—coordinates of the alignment points are arranged in two vectors, p,
and p,. The r— and y—coordinates of the corresponding points in the basis images are
arranged into two basis matrices, X and Y. Vectors of the coefficients, a and b, were then
found analytically by direct algebraic manipulation of the image matrices. This was possible
because of the small number of vertices used as alignment points for attitude determination.

Specifics of the approach taken are discussed in Chapter III.

2.5 Previous Applications

2.5.1 Recognition. Ullman and Basri have used the linear combination approach
in recognition of objects. Their methods include algorithms that minimize the difference
between the image of the object to be recognized and a view generated from the linear
combination of basis images. In one method, called full alignment, distortions are allowed
so that the LC image matches exactly. The solution is then evaluated on the plausibility of
the transformation. If the model is distorted too much, then the object of concern is not
represented by the model. In the minimal alignment technique, only rigid transformations are
allowed. A close match after rigid transformations indicates recognition. Ullman and Basri
used a third method that does not rely on matching images and features. The method,
called alignment search, searches the space of possible transformations. If a satisfactory

transformation in the allowable set is found, then the object is recognized.

Thau combined linear combinations and neural networks for recognition (12). In his
experiments, inputs based on a 2D image of the object to be recognized were fed into the
neural network. The network was trained beforehand with appropriate basis views of an

object. The neural net performed all the calculations, and output the confidence of recogni-
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tion. The coeflicients are never explicitly found. Thau also suggests that the neural network
can be configured to output attitude and position information as well. The utility of this
concept and the circumstances in which this might be a good idea will be discussed further

in Chapter IIL

2.5.2 Image Registration. In image registration, the basic goal is the alignment of
points between separate data sets, then transforming each data set so that each alignment

point is in the same position in each image. Image registration can be performed in 3D and

2D.

In the 3D case, Rizuto, as a component of his 1991 thesis, Three-Dimensional Med-
ical Image Registration Using a Patient Space Correlation Technique, sought to determine
geometric transformations required to orient two volumes so that user selected anatomic

landmarks were aligned (5).

In a collateral thesis, Identity Verification Through the Use ofFace Recognition and
Speaker Identification, Keller registers facial fcatures, such as eyes, to specific locations in a

2D image frame (6).

In both efforts mentioned, the composite transformation was found, then used to trans-
form a volume or image as necessary. In neither case, however, was it necessary to decompose
the transformation matrix into the actual transformation parameters such as rotation, trans-
lation, or scaling. The extraction of the transformation parameters from the transformation

matrix is the goal of this thesis.
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III. Linear Combination for Attitude Determination

3.1 Introduction

This chapter describes the specific techniques employed in this thesis. It begins by dis-
cussing the generalization of the linear combination theory to encompass 4D homogeneous
coordinates and all rigid transformations. Methods for determining coefficients and extract-
ing orientation information are then presented. Modeling and testing of the technique in

Mathematica and implementation on the Silicon Graphics workstation are also presented.

3.2 Linear Combination using 4D Homogeneous Coordinates

3.2.1 Matriz Representation of Images.  Throughout this effort, images are repre-
sented and manipulated in the form of matrices. An irﬁage object can be represented by a
matrix, P, which contains the z— and y—coordinates (if the image is an xy projection) of
important vertices of the object in that particular image. Several images of a single object

may exist. The ith image of an object with n vertices, P; then takes the form of

Tiv Yia
Ti2 Yio

P;= i3 Yi3

Tin Yin

Note that the vertices are ordered. While the order is arbitrary, it must be consistent
throughout all images of the same object. That is, if the vertex representing the lower left
corner of the right solar panel of a particular satellite appears as the fifth element (row) in
one matrix representation of an image, then the fifth row in all matrix images of the same

satellite must represent the same (lower left) corner of the same (right) solar panel.
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3.2.2 Basis Matrices.  As discussed in Chapter II, the linear combination of several
basis images to form a new image can be expressed in matrix form. The column vectors of

the new image, p, and p,, are calculated by
p. = Xa

p, = Xb.

where a and b are column vectors of the coefficients of the linear combination, and X and

Y are matrices of the first and second columns of the basis images, respectively.

The X and Y matrices formed from m basis images then have the following forms.

iy g2 13 " Tim
T2y 22 T23 - Tom
X = I3y T32 T33 - I3m
i Tnyg Tn2 Tn3d °°° Tnm ]
and ) _
Yia N2 i3 " Yim
Y21 Y22 Y21 - Yom
Y=1 3, w32 133 *** ¥Bm
Yn,t Yn2 Yn3 *°° Ynm .

where z, ,, and y, », are the z— and y—coordinates of the nth vertex in the mth basis image,
respectively. The dimensions of X and Y are thus dependent on the number of basis images
and the number of vertices in each image, and the coefficient vectors, a and b are equal in

length to the number of basis images.
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The coeflicients are then found by

a=X"*p, (M)

and

b=Y*p, (8)

where X+ and Yt are the pseudo inverses (or inverses if the matrices are square) of X
and Y. The existence of these inverses can be guaranteed by careful selection of the basis

images. Choosing basis images is discussed in the next subsection.

A complicated object may have a great many vertices, leading to very large matrix
representations. For determination of alignment, however, only a small subset of these
vertices are needed. In géneral,' the choice of these verti'ces is arbitrary. These vertices
become the alignment points. The alignment points should represent conspicuous features
that are visible at most orientations. For simplicity in finding inverses, m and n are chosen
so that X and Y are square, that is, the number of alignment points equals the number of

basis images.

3.2.3 Choosing Basis Images. In order to avoid singularity of the X and Y
matrices (ensuring the existence of their inverses), care must be taken so that the columns of
each matrix are independent. If a set of basis images results in X and Y with independent

columns, then the basis images can be thought of as being independent themselves.

As discussed in Chapter II, three basis images are necessary to represent an object
that has undergone any combination of rotation and scaling. If rotation and scaling are the
only transformations being considered, then a system of three images with three alignment
points each will be sufficient. Basis images are easily chosen. Almost any three images of
the object at three different rotations will be independent. In some cases, however, singular
matrices arise, such as when the first image has no rotation; the second, a pure rotation

about the z—axis; and the third, a pure rotation about the y—axis (13).
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If translations are to be considered, the choice of basis images becomes more compli-
. cated. In theory, four images are needed. However, because exactly three images span the
scaled and rotated image space of an object, that is, describe all scaling and rotation, no
more than three images that represent only scaling and rotation can be independent. In
other words, the basis image set must include translations in both z and y if four basis

images are to be used. However, the  and y translations need not occur in the same image.

In practice, three basis images without translation are sufficient. Used in the place
of the fourth image is a contrivance that greatly simplifies the extraction of the translation

transformation parameters. This concept is discussed in the next section.

The system developed in this thesis uses three basis images with four alignment points
each, and considers all rigid transformations of an object. When presented with an image
of an object at an unknown orientation, the coefficients for combiriing the basis images to

form the unknown image can be found.

The coefficients can then be tested against the constraints outlined in Chapter II
(Equation 6). If the coefficients satisfy the constraints, then it can be said that the object

in the unknown image is an instance of the object represented by the basis images.

3.8 Determining Alignment Parameters From the Coefficients

Once it is determined that the object in the unknown image is in fact an instance
of the object in the basis images, one can proceed to extract a set of transformations that
will result in the pose shown in the unknown image. In practice, there may be an infinite
number of transformations that result in the same pose. Rotations, for instance, can occur
either clockwise or cousnter clockwise. The order of transformations is important as well.
A rotation of 23° abou: the z—axis followed by a rotation of 49° about the z—axis yields
one result, while a rotation of 49° about the z—axis followed by a rotation of 23° about the

z—axis yields another.
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The transformations must be determined relative to a specific orientation through a
defined sequence of operations. For the purposes of this thesis, the baseline orientation is
that of a stored 3D model. The specific sequence of the transformations is scaling, rotation
about the r—axis, rotation about y—axis, rotation about z—axis, and lastly, translation. All

rotations are measured counter-clockwise.

With the proper choice of basis images, translation can be extracted directly from the
coefficients. The r—coordinates of the alignment points in the new image are in the first

column of P, which is referred to by p,. Expanding (7) gives
P =a1p;) +02P, 5 + 63D, 3+ G4P. 4.

Since three terms are sufficient to represent all scaling and rotation, the first three
terms can be arbitrarily assigned to represent scaling and rotation, and the fourth term
assigned to represent translation. In this case, translation is merely the shifting of the scaled

and rotated object by ¢t,.

P.=CP, +CPo+C3p. 3+

By choosing p. 4 =1, if follows that ¢, = a4. Similar manipulation of (8) will yield ¢, = b,.
This means that if the fourth basis image, P4, is replaced by a vector of 1’s, and the
remaining basis images P;, for ¢ € {1,2,3}, are formed from pure scaling and rotation, the
fourth coefficients, a4 and by, will be the amounts of translation in z and y, respectively.

The X and Y matrices thus take the form of

11 T21 T3 T4
T1,2 T2 T32 T42

r13 T23 T33 T43
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and

(yl.l Y21
Yi2 2,2
13 Y3

Y33
1

Ya,)
Ya2

Ya,3
1

-

RER

Note that with careful choice of the basis images, the first three row vectors are independent.
The fourth row is independent to the other three, thus both matrices are 4 x 4 square and

non-singular. That is, their inverses exist.

Extraction of the scaling and rotation transformations is a bit more complicated, and
requires a 3D reference model to be calculated exactly. It involves recove:ing the first two
columns of the original composite transformation matrix T'., as defined in (1). That is, the
composite matrix that transforms the 3D reference model to the pose represented in the
unknown image. Values for the individual transformations, in the sequence specified above,

that result in the composite matrix can then be found.

Substituting matrix inverses X ! and Y ~! for pseudoinverses X+ and Y* in (7) and

(8), the coefficients for the combination of z—coordinates are

a=X"p, 9)
and the coefficients for the combination of y—coordinates are
b=Y" 1p. (10)
Substituting for p.,
a=X"10u,
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where O is the 3D reference model of the form

Zny o2 1
Iy Yy 29 1
0=
T3 y3 z3 1
| Ta Y4 24 1]

and u, is the first column of the composite transformation matrix. Solving for u,,
u, = 0"'Xa. (11)
Similarly, u,, the second column of the composite transformation matrix can be found by

u, = 0"'Yb. (12)

Alternatively, if the 3D reference model O is not available, u, and u, can be calculated

from the linear combination coefficients and the transformations used to generate the basis

images. Since

I = pu; = pa,r, + pas, + pazu, + pasw,,

it follows that

u; = a7 + a28) + azu; + agw

and

Uy = biro + ba8g + bauy + byws.

Thus, the transformation matrix « is a linear combination of the transformation ma-

trices r, 8, t and w used to generate the basis images. For the choice of basis images outlined
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above,

0000
0000
0000
1111

Basis image transformation matrices, r, 8, and ¢, can be calculated since the pose of the

object in the basis images is known.

Using this alternative technique means that, as a minimum, only three 2D basis images
and their pose information needs to be stored beforehand. Having the entire 3D model is

helpful, however, since the coefficients can be calculated using simple matrix multiplication.

Each element of the u, and u, are functions of the transformation parameters: scaling,

s; rotation, ., 8,, 6,; and translation ¢,, t,. They are related by the following equations:

uz = scosf, cosb,

4,2 = s(cosb, sin 6, sind, — cosd, sinb,)

(13)
u,3 = 8(cosf, cosd, sinf, + sinf, sinb,)
Urd = t,
uy) = scosf,sind,
uy2 = s(sinf, sinf, sinf, + cosb, cosd,) (14)

uy 3 = s(cosf,sind, sinf, — cosd, sinf,)

Uya =1y
Again, the last elements, u,4 and u,4, are easily recognized as the translation, ¢, and ¢,
because of the choice of basis images. Because of the restriction of equal scaling along
each axis, the other elements and equations form a system of six non-linear equations and
four unknowns. The parameters of the composite transformation can be found by solving

this system of equations using an iterative numerical method such as Newton’s method or

gradient descent.
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Recognizing that u, and u, are columns of a transformation matrix leads to further

simplification of (13) and (14). The submatrix composed of the upper left 3 x 3 matrix of T',

is the transformation matrix for scaling and rotation. Such matrices have the property that

the rows and columns are orthogonal. Further, if the matrix represents only rotations, then

the rows and columns are orthonormal. Scale factors in the z and y directions can then be

found by

= 2 2
Sz = \/ ul, +uis +uls

and

—_ 2 2 2
Sy = ‘/u‘hl + Uy o + Uy 3.

Since rigid scaling has been assumed, then

§ = 85; = §y.

The above calculations reduce (13) and (14) to

u,; = cosf, cos,

U, = cosd,sinf, sinf, — cosf, siné,

u, 3 = cosb, cosf, sinb, + sinf, sin6,
and

u,, = cosf,sin,

U, 5 = sinf; sin§, sin b, + cos b, cos b,

’ . . -
u, 3 = cosf, sinf, sin 6. — cosé,sind,

where u,,, = *2* a4 = z,y, and s is as defined in (17).

(15)

(16)

(17)

(18)

(19)

The above equations, (18) and (19), describe two systems of three equations and three

unknowns with identical solutions. Each system, however, has multiple solutions, and are

not easily solved by numerical methods. Analytical solutions may exist, as described later.

Consequently, (13) and (14) are used to determine the alignment parameters.
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Figure 5. Basis images of four.

3.4 Modeling in Mathematica

The technique described above was implemented in Mathematica. Mathematica’s note-
book environment provided an ideal vehicle for setting up and exercising the method on a

simple object.

The object chosen for testing is shown in Figure 1. It is simply a collection of four or-
dered vertices connected by line segments. Images of the object are orthographic projections
onto the zy plane. The object is called four, both because it has four vertices, and because

certain projections take the shape of the numeral four.

The basis images are projections of the object rotated by 30° about an axis. In total,
three basis images are used, each with a rotation about a single axis. The basis images are

shown in Figure 5.

The computer determines a pose for the object by generating random values for scaling,
rotation about three axes, and translation in r and y. Translations in z will not be appar-
ent in an orthographic projection. The transformations are combined to form a composite
transformation matrix. Finally, the object is transformed and projected to create an image
of the object at the random pose. This image is then used as a test of the pose determination

system. An example of four at a randomly generated pose is shown in Figure 6.
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Figure 6. Random transformation of the object four.

The basis matrices, X and Y, are then extracted from the basis images (Figure 5)for
calculation of the coefficients. Calculations of @ and b (the z— and y—coefficients) are done
separately. Once calculated, the fourth elements of both @ and b can be checked against
the translation values of the transformation parameters. These values should be the same.
Additionally, the coefficients can be used to generate a new image from the basis images.

The new image should match the unknown image exactly.

From the coefficient vectors, the first two columns of the composite transformation
matrix, 4, and u,, are then calculated by (11) and (12). Newton’s method is then used to
solve the system of equations (13) and (14). Note that only six equations are used: u,4 and
u, 4 are disregarded. The roots of the system are the parameters for scaling and rotation

about each axis, s, 6;, 6,, and 0,. Recall that the translation parameters, ¢, and t,, are
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found analytically from @ and b, and Newton’s method is not needed to find them. The
scaling parameter, s can be checked using equations (15), (16), and (17).

In Mathematica, Newton’s method is limited to having the same number of equations
and unknowns. The system under consideration has six equations and four unknowns. Work-
ing within this limitation, only four equations are input to Newton’s method. As a result,
Mathematica finds a solution to the four equations input, which is not always a solution
to all six equations. Convergence to erroneous roots is minimized by the choice of initial
guesses input to Mathematica. The initial guesses are random numbers between 1 and 2
for the scaling, s, and between 0 and 7 for the angles of rotation, 6., 6,, and ,. When
Mathematica finds an erroneous solution, Newton’s method can simply be rerun with 'newly

generated random initial guesses.

Correctly solving the system of equations results in a complete set of the transforma-
tions necessary to recreate the pose in the unknown image. As mentioned before, the set
of transformations is not unique. Rotations may be clockwise instead of counter clockwise,
or have extraneous factors of 27. When performed in the correct order (scaling; rotation in
z, y, then 2; and translation) the original object, four, can be transformed and projected
to duplicate the unknown image. Figure 7 shows an original, randomly generated, unknown
image, and the duplicate image generated from the transformation determined by the linear

combination technique. The images match exactly.

3.5 Implementation on Silicon Graphics Workstation

A modular approach was used in the implementation of the alignment system on the
SGI. Figure 8 shows the basic processing architecture of the system. User interface functions

are not explicitly shown here, but are presented in detail in Appendix A: Users Guide.

Peripheral components of the system include the 3D model and the Model Data Ma-
nipulator. These components provide data in the required format to the main processing
component. The main processing component of the system is the coefficient and parameter

extraction block. It consists of a separate program called matcher. It is in turn composed of
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Figure 7. Random and matched images.

modules for calculating the coefficients, transform matrix, and transformation parameters.

Each component is discussed in the following subsections.

3.5.1 8D Model.  The 3D model is stored in a modified New Solid Model (NSM)
format. The NSM format is generated by the SMT satellite modeling program used by
the Philips Laboratory Satellite Assessment Center (2). The data is stored in a hierarchical
structure. Simple assemblies, or model elements, are composed of eleven primitives including
rectangular parallelepipeds, boxes, wedges, hexahedrons, cones, elliptical cylinders, elliptical
cones, spheres, hemispheres and ellipsoids. More complex assemblies are then the model ele-
ments or other assemblies. Finally the entire satellite is represented by a few rather complex
assemblies. NSM format files are customarily given the .nsm suffix. A slight modification is
made to the NSM format so that alignment point information is included in the model file.
The modified format is distinguished by the suffix .nsm.alp. Details of the file format are
covered in the User’s Guide (Appendix A).

3.5.2 Model Data Manipulation. = The Model Data Manipulator generates images

for use in the parameter extraction program. It reads the .nsm.alp model files and writes
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Figure 8. Parameter extraction processing architecture
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Figure 9. Image generator window on the SGI workstation.

the vector image files used as basis images and simulated sensor images. It is embodied in

the program writesat. Executing writesat is covered in the User’s Guide.

The procedure used by writesat is easy to follow. It reads the model file, and builds
a hierarchical structure in memory representing the satellite. It then traverses the structure
to render a GL (SGI Graphics Library) graphical object in wireframe. Graphical objects
are a collection of drawing commands that can be rapidly executed and manipulated by the
SGI workstation (8). The prescribed transformations are then loaded into the SGI’s internal

transformation matrix.

The graphical object is transformed, projected and displayed on the screen. Alignment
points appear as colored spheres superimposed on the image. An example of the writesat
window is shown in Figure 9. The user then has the opportunity to modify the pose before
creating an output file. As the pose is modified. the current transformation parameters are

output to the screen.
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When a satisfactory view is achieved, writesat creates the output file. First, the
transformation matrix is retrieved from the SGI's matrix stack. Then the hierarchical struc-
ture is traversed, transforming each vertex of every line as the entire structure is rendered.
The vertex pairs that define each line are written to the output file, resulting in a vector file
format rather than a pixel based image file. The header of the file contains the locations of

the alignment points and the transformation parameters used to create the view.

3.5.83 Parameter Eztraction. The matcher program is the main component of
the attitude determination system. Its inputs include the 3D satellite model, three basis
images, the simulated sensor image, and user designation of the alignment points. Outputs
include coefficients for linear combination of the basis images and alignment parameters.
Additionally, it calls routines that display all the images and an orthographic projection
of the 3D model. Once alignment parameters are found, the 3D model is transformed and
projected. The quality of the alignment parameters can then be checked by comparing the

projection of the transformed model and the sensor image.

The matcher program is launched from a C shell window and requires a control file
that specifies each basis image, the sensor image, and the 3D model. Execution of matcher

is covered in the User’s Guide.

Each image input file is in the vector format produced by the writesat program.
As discussed above, the vector files are 3D objects. The files specified as images are auto-
matically projected to an orthographic view as they are read in, converting them to true
2D images. The 3D model file is read in without modification. It is used to build a SGI
graphical object, which is in turn manipulated and projected using GL routines. The image
display and manipulation functions are written as separate subroutines that work specifically
with the vector image format. Modifications of the code for use with pixel formatted im-
ages should be a simple matter of replacing these routines with appropriate image handling

routines.
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Upon launching, the matcher program opens windows that display each basis image,
the simulated sensor image and the 3D model (if available). An example of the matcher

screen is illustrated in Figure 10.

Note that because the basis and sensor images are 2D, the alignment points are repre-
sented as crosshairs, rather than spheres as in the writesat program. The 3D model display

retains the spherical alignment points so that they will be visible at any pose.

After the user has identified the alignment points in the sensor image, the coefficients
for linear comr ..nation or the transformation parameters may be calculated. Separate mod-
ules are used for calculation of the coefficients and the transformation parameters so that
calculation of the transformation parameters is not necessarily dependent on calculation of

the coefficients.

The calculations rely heavily on routines from Numerical Recipes in C (10). Coefficients
for the linear combination are calculated as described in the previous section. Equations
(7) and (8) are solved using lower-upper decomposition (ludcmp) and back substitution
(1ubksub) routines from the Numerical Recipes library.

Lower-Upper (LU) Decomposition with backsubstitution is a method of solving linear
systems of equations. To solve for the coefficients of the z—coordinates, a, (9) is rewritten

as

X~'p, = LUp, = a,

where

( 1.1 0 0 0
a a 0 0
L= 21 Q22

az1 aze a3z O

Q4,1 @42 43 04,4J

e
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Figure 10. Parameter extraction windows on the SGI workstation.
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and then solving

Ly=a (20)

and

Up. =y. (21)

Equation (20) is solved by forward substitution

y =kt

aly

yi= %“ [pz.i - E;:ll aijyj] t= 2': 37 eoe ’N
while (21) can then be solved by backsubstitution

= AN
an BNN

a,-=$[y,-—2ﬁ=,-+lﬂ.-jaj} 1=N—1,N—2,,1

The process is repeated for the y coefficients, b, using (10).

The calculation of the transformation matrix, T, varies slightly from that described
above. Rather than using (11) and (12), T'. is found by

-

T.=0"'P (22)

where O and P are the matrix representations of the 3D model and the unknown image.
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The first two columns of T, are then u, and u,. The translation parameters, t, = u, 4
and t, = u,4 can be extracted directly. The elements of u, and u, can then be input to
an appropriate numerical method with the equations (13) and (14) to find the remaining

transformation parameters s, 6., 6,, and 0,.

The Numerical Recipes ludcmp and lubksub routines are used to find u, and u,, then
the Newton-Raphson root finding routine mnewt with a randomly generated starting solution
is used to solve for the alignment parameters.

The Newton-Raphson method is an iterative process for finding the roots of a system
of equations. For the one-dimensional case, several values of z; are tested as roots of the

function, f(z). Subsequent trial solutions, z;,, are found by
Tipl = T + 6(1‘,‘)

where
f(=z)
0z) = —-—.
@ =fw
The method is generalized to four dimensions and applied to (13) and (14).

If a solution vector is found, it is checked against (13) and (14). If it is an extraneous
root, mnewt is rerun with another randomly generated initial guess until a valid root is found.

The number of iterations of mnewt is returned with the solution.

The numerical routines are written as separate subroutines so that they may be re-
placed easily in order to implement and test alternate methods. All the major programs

used in this thesis are included in a makefile for ease of compilation and linking.
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IV. Performance Analysis

This chapter presents an analysis of the performance of the parameter extraction sys-
tem. For the tests performed, the previously discussed DMSP model was transformed to a
random pose and orthographically projected to form the simulated sensor image. The basis
images were taken of the satellite rotated 60° about the x—, y—, and z—axes.

A separate program sens was written to call the parameter extraction routines repeat-
edly while varying alignment point errors and tolerances. The desired variations in tolerance
and alignment points are input to sens, and an ASCII file containing introduced errors,
extracted parameters, and error metrics is created as output. Running sens is covered in
the User’s Guide (Appendix A).

In the analysis, the effects of tolerance and alignment point error on the parameter
extraction performance were investigated. The locations of alignment points in the reference
model and the simulated sensor image are shown in Table 1. The results of the experiments

are described below.

4.1 Tolerance

Two tolerances, tolx and tolf are input to the Numerical Recipes root finding rou-
tine mnewt. The first, tolx, is compared to the difference between the tentative solution

Table 1. Data fqr performance analysis

AP No. | z (inches) | y (inches) | 2 (inches)
Model 1 65.379997 13.509999 | -21.000000
2 -25.040001 | 127.193787 | 114.209007
3 -12.882499 | -156.188995 | 119.519012
4 0.000000 1.194350 |-127.111397
| Sensor 1 24.570559 | -15.408206
2 -137.169266 | 92.209892
3 127.339104 | 165.023773
4 38.865135 | -111.773666
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vector (see discussion of Newton-Raphson method in section 3.5.3) in successive iterations.
Iterations stops if J is less than tolx. The second, tolf, is compared to the functions, here
(13) and (14), for which roots are sought. If the values of the functions at the trial solution
vector X are less than tolf, iteration stops. For simplicity, tolx and tolf are taken to
be equal, and can be varied from the control menu in the parameter extraction program

matcher. For the case of (13) and (14), tolx and tolf are unitless.

To illustrate the effect of tolerance on the accuracy of the extracted parameters, The
parameter extraction routine was run ten times each at tolerances varying from 0.00001 to
0.1. Each trial resulted in a set of transformation parameters, S. S includes s, 0., 6,, 0.,
tz, and t, as previously defined. The 3D model of the satellite is then transformed using S,
and the positions of the alignment points compared with their true locations, that is, the
locations that resulted from the pose depicted in the simulated sensor image. The scatter
plot in Figure 11 shows the log-rms errors across all four alignment points in z, y, and z for
each trial. Clearly, the error increases roughly linearly as the tolerance increases. Note that
the units of the plot are log(inches), and the errors are in fact quite small given that the
satellite’s size is on the order of hundreds of inches. The extracted transformation parameters

are shown in Figures 12 through 16.

Immediately obvious from Figure 12 is the bimodal nature of the rotation parameters,
despite the fixed order of transformation. There are two distinct sets of rotations, denoted by

I and II in the figure, that result in the correct pose. By inspection, the following relationship
between I and II can be deduced.

ar = ay + 180°
Bir = —(Br + 180°) (23)
Yrr = v + 180°

Where a;, §;, and 7; are rotations about the three axes with assignments between a;, §;, 7;

and 0., 0,, 6, depending on the defined order of transformations.
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Figure 11. Logarithmic scatter plot of rms errors and convergence tolerance (inches).

These relationships, (23), are presented without rigorous proof, but can be understood
intuitively. After the initial rotation, o, an object rotated in mode I is oriented in exactly
the opposite direction of the object rotated in mode II. Rotation 3 results in a sort of mirror
symmetry between the modes, and rotation 7 brings both modes into the same orientation.

These rotations are presented graphically in Figure 13.

Scale and translation errors are shown in Figures 14 through 16. Figure 14 shows some
variation that increases with tolerance. The variation is, however, very small. Exact values
of s can be found directly via (15) and (16), which do not require mnewt and are thus not
affected by the tolerance setting. Similarly, the £— and y— translation errors (Figures 15

and 16) are not found via mnewt and do not vary with tolerance.
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Figure 12. Rotational parameters and convergence tolerance.

4.2 . Alignment Point Error

The location of alignment points has a marked effect on the guality of the extracted
parameters. In the previous experiment, the alignment points were located at their true
positions in the simulated sensor image. That is, no error was introduced in assigning
alignment points. In this experiment, an error in the location of a single alignment point
was introduced. It should be noted that as large errors in input alignment point locations are
introduced, the convergence tolerance must be increased. The following experiments thus

include the effects of both increased convergence tolerance and alignment error.

Three types of error were introduced. First, an error of fixed magnitude and direction
was introduced, and the magnitude of the error varied. Second, an error of Gaussian dis-
tribution and variance based on the location of the alignment point was introduced to each
coordinate of a single alignment point. This had the effect of varying magnitude and direc-
tion of the error. In the third case, the Gaussian errors were of an absolute, fixed variance.

Each experiment is discussed in detail below.

4.2.1 Fized Magnitude Error.  For this experiment, errors, 8, were introduced to a

single alignment point (Figure 17). The amount of error introduced was calculated by

8 = (cp..cpy, cp)
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where p., p,, and p, are the coordinates of alignment point P, and c is the amount of error
desired. The amount of error in each direction was varied from zero to 0.4, or 40%. The
magnitude of the error was made relative to the coordinate magnitude because the coordinate
magnitude is a rough measure of the object’s size (assuming the object is centered near the
origin, and the alignment point is chosen near the extremes of the object). With a relative
error magnitude, generality and applicability to objects of any size are maintained. The same
alignment point was moved for each trial, and ten trials were taken at each error setting. The
tolerance was set to ensure convergence. Each trial was seeded with a randomly generated

initial guess.

As in the previous experiment, each trial resulted in a parameter set S from which the
following figures were generated. Figures 18, 19, and 20 indicate that both the magnitude
and spread of output errors increased with the position error in the input alignment point.

The translation error does not vary between trials since they are calculated explicitly.

4.2.2  Statistical Position Error. In the next two experiments, Gaussian errors

were introduced into each coordinate of a single input alignment point of the satellite at an
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arbitrary pose. These errors will be referred to as input errors. The same pose was used for

each trial.

In one experiment, the variance of the error was based on the coordinates of the
alignment point. In the other, all points were varied using a constant variance. Five hundred
trials were performed at each of four alignment points, for both relative and absolute variance

cases, for a total of 4000 trials.

In each case, the tolerance was set so that most of the trials converged. For each
convergence, the resultant transformation parameters were applied to the reference model.
The rms difference in the position of each alignment point in the transformed reference and

the original pose were recorded as output errors. The results are presented below.

4.2.2.1 Relative Variance Error. For this experiment, a random error of
Gaussian distribution and variance equal to 40% of the coordinate magnitude. The input
alignment points were varied one at a time and a scatter plot (Figure 21) generated as

described in Section 4.1. Figure 21 indicates that the output errors tended toward some
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Figure 18. Logarithmic scatter plot of rms errors and alignment point error (inches).

median value, but with some very large errors. Linear plots and histograms of the rms

output errors are shown in Figures 22 and 23.

Variance, median and mean of input and output errors are tabulated in Table 2. Note
that the descriptive statistics of the output errors are calculated with respect to the rms
values, and thus concern only the magnitude of the errors. The statistics on the input errors

include both sign and magnitude.

The data suggest two possible patterns. First, the data indicate that the errors in z
tend to be largest when compared to errors in & and y. Second, the data show that, the

output errors have some dependency on which alignment point is varied.

The fact that the z errors are largest is probably a result of the fact that the data

input to the system (the simulated sensor image) is of a two-dimensional nature. As a
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Figure 21. Scatter plot of output errors for relative variance error case. (inches)

Table 2. Descriptive statistics for relative error case.

Output (rms inches)

Input (inches)

AP No. T y z z Yy z
Mean 1 294208 | 2.55833 | 5.05387 | 0.0812185 | -0.121072 | 0.249919
2 4.44094 | 4.44663 | 6.8908 1.44183 | 0.100198 0.177558
3 4.5709 | 4.87209 | 8.33287 } -1.11337 | 1.27488 0.285058
4 3.9526 | 4.34908 | 8.99865 | -0.371578 | -0.548609 | -0.00138069
Variance 1 152.36 | 122.316 | 32.0131 | 9.81469 5.20771 25.7983
2 226.408 | 268.213 | 27.0286 | 29.5943 27.5274 9.56482
3 117.972 | 140.144 | 24.7852 | 43.1784 54.758 18.408
4 149.245 | 173.624 | 28.5099 | 14.9638 38.6951 5.78199
Median 1 1.62021 | 1.45943 | 3.64331 | 0.214546 | 0.0122905 | 0.575096
2 2.89291 | 2.818672 | 6.484473 | 1.270673 | 0.436209 0.174036
3 3.38645 | 3.63636 | 8.29516 | -1.16863 | 1.04323 0.137212
4 2.980084 | 3.233486 | 8.530995 | -0.338556 | -0.528022 | -0.047791
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Table 3. Descriptive statistics for absolute variance case.

Output (rms inches) Input (inches)
AP No. T Y 2 z y z

Mean 1 4.28092 | 3.94261 | 8.9713 | -1.38122 | -0.261726 | -0.148742
2 4.86538 | 5.05233 | 7.36541 | 1.54298 | -0.0219248 | -0.692095

3 4.11481 | 4.06205 | 8.44518 | -0.783976 | 1.27228 | -0.213669
4 5.04234 | 4.97889 | 10.5366 | -0.482599 | -0.0133635 | -0.0100668

Variance 1 157.244 | 180.993 | 61.628 | 51.7679 42,7191 64.6651

2 309.401 | 345.356 | 42.3105 | 34.1778 39.4529 57.1569

3 50.2505 | 59.5722 | 16.4593 | 53.4182 47.0717 56.7694

4 150.672 | 161.375 | 52.2059 | 45.8241 48.4552 56.1919

Median 1 2.409773 | 2.206184 | 6.05825 | -1.25679 | -0.349007 | -0.695875
2 3.118494 | 3.131097 | 6.8591 | 1.205133 | 0.191433 | -0.891528

3 3.56763 | 3.48531 | 8.51234 | -0.472554 | 1.21493 | -0.459879
4 3.75126 | 3.63944 | 9.74171 | -0.782493 | 0.173531 | -0.317917

result, no information on the z coordinates of the input alignment points is available. The
only information available in the z dimension comes from the 3D model. Errors in the z

dimensions are thus not observable to the system.

Because the alignment points are assigned arbitrarily, the output errors should not
depend oh which alignment point is in error. The relationship between the alignment point
in error and the output errors are probably due to the differences in the variance of the
input error. Recall that the variance of the input error in each dimension is a fraction (40%)
of the true alignment point coordinate in that dimension. Thus, the input error is roughly
correlated to the distance of the alignment point from the origin. The alignment points vary
in distance from the origin, thus the input errors vary from alignment point to alignment

point. The next experiment was conducted to test this theory.

4.2.2.2 Absolute Variance Error. To illustrate that the output errors are
independent of which input alignment point is in error, the above experiment was rerun. An
absolute variance of 60 inches? was introduced to each alignment point. Figures 24 through

26 and Table 3 summarize the results.
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The data indicate that some variation in the output errors still exists as the input
alignment point in error is changed. Comparing the means and medians Tables 2 and 3 show
that the variation is, however, much smaller for the case of absolute input error variance.
The variation that does exist can be accounted for by the limited sample size. The variance
measures in each case are very dependent on the few outputs with large errors. The fact that
similar errors arise regardless of the alignment point that is in error indicates that output

errors are not a function of which alignment point is in error.

4.8 Conclusion

The accuracy of the output of the attitude determination system is dependent on both
the convergence tolerance and the errors in input alignment points. From this analysis of the

performance of the parameter extraction system, a few general conclusions may be drawn.

A comparison of the two effects is difficult, since an error in input alignment point
location requires relaxation of the convergence tolerance. Comparing the magnitude of errors
as only the convergence tolerance is changed (Figure 11) with the magnitude errors as errors
are introduced (Figure 17) indicates that output errors increase with tolerance, and high

tolerances contribute a great deal to output errors.

Input alignment point errors require larger convergence tolerances. Thus the true effect
of input alignment point errors may be somewhat masked by the effect of the high tolerance
required for convergence, but input alignment point errors undoubtedly contribute to output

€ITOrsS.

Errors in the output of the alignment parameters can be observed in many represen-
tations. The actual parameters (Figures 12, 14, 15, and 16, for example), or the rms errors
resulting from transformation by the parameters (e.g. Figure 11) can be studied. Inspection
of the actual parameters shows that the rotational parameters occur in two modes that both
give equally valid results. Rms errors provide a quantifiable measure allowing direct com-

parison between solutions and calculation of statistical measures. Examination of rms errors
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shows that relatively large errors in the 2z dimension occur, but are generally not observable

in a 2D image.

Errors in output vary according to the magnitude of the location error at each input
alignment point, and not according to which alignment point is in error. That is, equal errors
among alignment points contribute equally to output alignment errors. Because output
errors arise through a non-linear mapping from input errors, superposition of output errors
will not hold. That is, output errors when four alignment points are in error will not be
the sum of the errors introduced by the error in each alignment point. The case of multiple
alignment point errors was not studied, and further investigation is necessary before drawing

conclusions other than the above.

Because vector images were used in the above analysis, fine variations in alignment
point locations and errors could be introduced. In a more realistic application, pixel images
would be used, and precision in identification of alignment points in the image cannot exceed
the pixel resolution of the image. The error statistics used in this analysis are analogous to

a single pixel error at a hypothetical resolution of one foot square.

In studying the error sources and mechanisms discussed in this chapter, it should be
noted that they are specific characteristics of the extraction method used. In this case they
are characteristic of the Newton-Raphson method for extraction of scale and rotation, and
the linear algebra expressed by (22). Implementation of alternate methods would require

additional analysis of their performance before conclusions can be drawn.
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V. Conclusions and Recommendations

The principal goal of this thesis was to develop a technique for determining the attitude
of an object, specifically a satellite, in a 2D image. The technique developed estimates the
alignment parameters that transform a 3D model from a reference attitude to an attitude
that can be projected to match the attitude in the image. Additionally, coeficients are found
that can combine a series of basis images to form an image of the object at the same pose

as in the original image.

The basic techniques of the alignment parameter and coefficient extraction were ini-
tially modeled in Mathematica, then implemented on a Silicon Graphics workstation using
C and the SGI Graphics Library (GL). The techniques were tested on a simple 3D figure
and a satellite model obtained from the Philips Laboratory Satellite Assessment Center.

A performance analysis was performed on the SGI implementation. Qualitative effects
of input alignment point errors and tolerance parameters in the numerical method employed
were observed and described. As expected, output errors increase with convergence tolerance

and input alignment point errors.

This chapter covers the basic findings of this thesis, and outlines areas for further

investigation.

5.1 Research Conclusions

A 2D image of a 3D object at an arbitrary pose can be generated as the linear com-
bination of three basis images. Embedded in the coefficients of the linear combination is
information specifying the pose of the object in the original image. That information can
be successfully extracted. Using the techniques developed in this thesis, the amount of data
stored beforehand can be reduced to a minimum of three 2D basis images of the object of

interest at known poses.
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With a system such as the one developed for this thesis, it is possible to estimate the
pose of a 3D object represented in a 2D image. To do so, one must be able to associate four
alignment points in a set of 2D basis images with their locations in the original 2D image. A
set of coefficients that combine the basis images to form the original image and specify the
translation parameters can then be found. Combining the coefficients with a 3D model of the
object or pose information from the basis images results in a system of non-linear equations.
The equations can be solved numerically to yield a set of transformation parameters that

describe the pose of the object in the 2D image.

The quality of the estimated transformation parameters depends on the method used
to solve the non-linear system of equations and the accuracy with which the alignment points

can be associated between the images and the model.

The main parameter in the Numerical Recipes Newton-Raphson method used in this
thesis was the convergence tolerance. The use of high tolerance settings resulted in degra-
dation in the quality of the extracted parameters as measured by the rms error between the
true alignment point locations and the locations derived from application of the extracted
alignment parameters. High tolerance settings are sometimes required if errors in location

of the input alignment points exist.

Errors in the location of input alignment points also degrade the quality of the extracted
transformation parameters. Errors in output, evident in both the rms measure described
above and comparison of the alignment parameters with the true values, increase as errors
in the input alignment points increase. Qutput errors are not a function of which alignment

point is in error.

5.2 Contributions

The main contributions of this thesis are twofold. First, it combines the principle of
linear combination of images and the concept of homogeneous coordinate systems. This
allows all transformations of interest (scaling, rotation, and translation) to be modeled as

linear transformations, which in turn allows calculation the coefficients for linear combination
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of the basis images in a single matrix multiplication. Additionally, a scheme for choosing
basis images so that translation parameters are available by inspection from the coefficients is
described. A method is also described for determining the other transformation parameters

from the linear combination coefficients.

The second contribution is the construction of a software tool that applies the tech-
niques developed above. The tool generates vector images from a constructive solid geom-
etry (CSG) model of a satellite that can be used as basis images or as simulated sensor
images. From these images, the tool calculates the linear combination coefficients and can
make reasonable estimates of the transformation parameters used in posing the satellite for

the simulated sensor image.

5.8 Recommendations

This thesis has illustrated the basic utility of the parameter extraction method studied.
The system developed here represents a single implementation using only a few of the many
possible implementation techniques. Several alternate techniques exist. A few were allu'>d
to earlier, but not covered in detail due to the limited scope of a thesis effort. These tech-
niques may provide better performance and are worthy of further investigation. Additionally,
opportunities exist for further study and improvement of the implementation described here.
In many of these areas, the potential exists for eliminating the need for the 3D model, thus

reducing the requirement for reference data to the basis images.
5.3.1 Alternative Parameter Extraction Techniques.

5.3.1.1 Analytical Methods. Alternative perspectives of the problem of pa-
rameter extraction suggest that analytical /not iterative and non-numerical) techniques may

exist for extraction.

The linear combination coefficients, a and b, and the columns of the composite trans-

formation matrix, T'. can be viewed as orthogonal vectors. Each set of vectors can be
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normalized and taken to represent the axes of transformed coordinate space. The transfor-
mation between the coordinate spaces may be somehow analogous to the transformation of

the object, thus yielding the object transformation parameters analytically.

5.3.1.2 Non-Linear Methods. In the current implementation the required
elements of the composite transformation matrix cannot be found analytically without the
3D geometric model. Information about the transformation parameters, along with the 3D

geometry, are embedded in the linear combination coefficients.

The linear combination coefficients can be found analytically. With the choice of
basis images outlined above, the translation parameters are determined in the process of
calculating the coefficients. This leaves four parameters, scaling and rotation about each

axis, that must be found through additional computation.

Further study of the coefficients and the alignment parameters may reveal a relationship
that may be modeled by a non-linear technique. It is possible that neural networks or
hyperbasis functions (basis functions in more than three dimensions (12)) may be employed

to map the linear combination coefficients direcily to transformation parameters.

5.3.2 Potential Improvements. The current system is a rudimentary implemen-
tation of only the basic elements of the parameter extraction methods. Improvements are
possible that can increase the functionality and performance of the system. A few of these
improvements, which fall roughly in the area of artificial intelligence (Al), are discussed
below (15).

The system relies on a series of alignment points. Corresponding points in the 3D
model, basis images, and the sensor image must be identified. The alignment points must
meet certain criteria that describe their spatial relationships to each other in 3D. Addition-
ally, the alignment points should be at the extremities of the object so that they can be

identified easily in the sensor image. Currently, the alignment points are chosen manually in
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the 3D model. An Al system could be built to automatically choose alignment points based

on the criteria described above.

Once the alignment points are determined and a sensor image obtained, the user man-
ually identifies the alignment points in the sensor image. Sometimes, one or more alignment
points may be obscured due to the pose of the object. Additionally, the sensor images may
be noisy, making it difficult to identify the alignment point exactly. An Al system could be
useful at several levels: it could help the user to locate the obscured alignment points; it
may choose and perform image enhancement processes to reduce noise, facilitating precise
location of the alignment points; it may locate the points precisely given a rough estimate

from the user; or it may locate all the alignment points automatically.

5.4 Summary

This thesis has shown that it is possible to extract information describing the pose of a
3D dimensional object in a 2D image. While this study focused specifically on the problem
of satellite attitude determination, the methods discussed are applicable to any object on

which suitable alignment points may be defined.
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Appendiz A. User’s Guide

This appendix contains detailed information on how to use the software tools that
make up the attitude determination system implemented for this thesis. Three main tools
are included: writesat for model manipulation and image generation; matcher for attitude
determination and coefficient extraction; and sens for performance analysis of the numerical

routines used. A listing of all source code is included in a subsequent appendix.

The sysiem estimates the attitude of a satellite in a 2D image by extracting the param-
eters that will transform a 3D model of the satellite from an arbitrary position to one that
will produce the 2D image when projected into the zy plane. The attitude is thus relative

to the original, arbitrary position.

The main component of the system is the matcher program, which performs the cal-
culations necessary to extract the transformation parameters from the input data. The
writesat program is a utility that manipulates the 3D model of the satellite of interest,
and generates output files that are used as input images and data for matcher. The utility,
sens, is an associated program for performance analysis through repeated executions of the

numerical routines used by matcher.

The programs were written and are run on a Silicon Graphics Workstation in C using
the Silicon Graphics Graphics Library (GL) and numerical routines from Numerical Recipes
in C.

A.1 Model Manipulation

This program, writesat generates the input images for matcher. Required inputs are
a constructive solid geometry model (CSG) file of the satellite of interest, and a control file

containing input and output filenames and transformation parameters which specify a pose.

A.1.1 Input File Formats.




A.1.1.1 Control File. The program is controlled using an input file provided

from the UNIX command line.

Ci: Control file for writesat

C2: Martin Chin

C3:

C4:

In: ../satmodel/dmsp.geom.nsm.alp

Out: basli.vec

1.0 60.0 0.0 0.0 0.0 0.0
The control file, listed above, must contain the filename of satellite model, the desired pose
(s, 0z, 0y, 6;, t=, t,)of the satellite in the output image, and an output filename. If a scale

factor of zero is indicated by the control file, a random pose is generated.

A.1.1.2 3D Model File. The 3D model is stored in a modified New Solid
Model (NSM) format. The NSM format is generated by the SMT satellite modeling pro-
gram used by the Philips Laboratory Satellite Assessment Center. The data is stored in a
hierarchical structure. Simple assemblies, or model elements, are composed of eleven prim-
itives including rectangular parallelepipeds, boxes, wedges, hexahedrons, cones, elliptical
cylinders, elliptical cones, spheres, hemispheres and ellipsoids. More complex assemblies are
then composed of the model elements or other assemblies. Finally the entire satellite is
represented by a few rather complex assemblies. (2) NSM format files are customarily given

the .nsm suffix. The modified format is distinguished by the suffix .nsm.alp.

The NSM file format includes four main sections: Header, Model Element Definitions,

Model Assembly, and Final Assembly. The sections must appear in the order listed above.

The header contains generic information about the model, such as its name, units used

in the file, and the number of parts included in the file. The header is limited to the first
three lines of the file.

DMSP Block SD-2
UNITS=IN
LAST UNIQUE ID = 1582
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The satellite model used in this thesis is the Block 5D-2 DMSP, supplied by the Philips

Laboratory Satellite Assessment Center.

The model element definitions section lists information on the composition of model

elements and their positions.

#

# Model Elements

t

$

$ Alignment Points

$

AP 0 65.379997 13.509999 -21.000000

AP 1 -25.040001 127.193779 114.209000

AP 2 -12.882499 -156.188995 119.519005

AP 3 0.000000 1.194350 -127.111397

$

SAVE Apogee Kick Motor EL 2
#Surface Property: Ti-6A1-4V titanium alloy (bare)
#Bulk Property: Ti-6A1-4V titanium

#Minimum Thickness: 0.752

#Initial Temperature (Degrees Kelvin): 298

#Melt Removal Flag: Melt Temperature Plus Phase .'hange

#Damage Mode #1: NONE # of Rays: 0

#Weibul Parameters: A: 1 B: 1C: 1

#Damage Mode #2: NONE # of Rays: 0O

#Weibul Parameters: A: 1 B: 1¢C: 1

#Damage Mode #3: NONE # of Rays: 0

#Weibul Parameters: A: 1 B: 1¢C: 1

$

$

$

S SPH 0.0 0.0 0.0 0.0X 0.0Y 0.0Z
0 0 0 16.5

#External: YES

#Collector Points: NO Spacing: 5 Minimum #: 1

#Faces = 1: NO 2: NO 3: NO 4: NO 5: NO 6: NO

V SPH 0.0 0.0 0.0 0.0X 0.0y 0.0z
0 0 0 15.748

#External: NO

#Collector Points: NO Spacing: 5 Minimum #: 1

#Faces = 1: NO 2: NO 3: NO 4: NO 5: NO 6: NO
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END Apogee Kick Motor
$

It must begin with the first three lines displayed above. Each element is then delineated by
the SAVE and END keywords. Each element is given a unique name and integer identification
number. Between the keywords is various information about the construction of the element
denoted by a # at the beginning of the line. Comment lines are denoted by $. Lines beginning
with # or § are usually ignored for the purposes of this thesis.

Modifications to the file are limited to location of alignment points in the file. Align-
ment point designations must be embedded in the Model Elements section of the NSM file
and referenced to the same coordinate system as that of the final assembly. The new key-
word AP is used to denote alignment points. Each alignment point record begins with AP an

includes the number of the alignment point and its location.

A list of primitives with appropriate parameters for size and location then follows.
Each primitive is denoted by an S or V, indicating whether the primitive is solid or a void,
followed by a three letter code indicating the type of primitive. Only solid the primitives are

of interest in this thesis.

The Model Assembly section describes the structure and position of the assemblies.

*

# Model Assemblies

*

SAVE prop.L3.N2H4 Thruster CM 526

CALL N2H4 Thruster 527
0 0 0 1) 4 oy 0z

EXTERNAL: YES

END prop.L3.N2H4 Thruster

*

Each assembly is also delineated by SAVE and END keywords. Each assembly is named
and given a two letter code indicating the type of the assembly (CM = component, SF =
subfunction, SS = subsystem, SY = system). The CALL keyword then refers to name of
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the model element or assembly to be used, and provides transformation parameters for its

location in the assembly.

The final assembly section calls the assembly that describes the entire satellite. Note
that no SAVE and END keywords are used.

*
# Final Assembly
#
CALL SYSTEM DMSP
0.0 0.0 0.0 0.0Xx 0.0Y 0.02
LAST

The end of the file is signaled by the keyword LAST on the last line of the file.

A.1.2 Ezecution. The program is started from a C shell command line by the
following command at the UNIX prompt:

writesat filename

where filename is a control file of the format specified above. writesat then opens the

required files and displays the model at the specified pose.

The alignment points are displayed as colored spheres (Figure 9), so that they are
visible at all poses. The user may then manipulate the rotation and scaling of the pose
before generating an output file. The user’s focus (the SGI cursor) must be in the writesat

window to control the program.

A.1.2.1 Pose Manipulation. To change the pose, the numeric keypad is used.
The numerals must be enabled by pressing the Num Lock key. An indicator light on the
keyboard denotes the Num Lock mode. Figure 27 illustrates the rotations invoked by the
keys. The 5 key restores the original pose specified in the file or the originally generated
random pose. The + and - keys change the scale factor up and down, respectively. The new

transformation parameters are displayed in the C shell window.
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Figure 27. Numeric keypad functions in for pose manipulation.

A.1.2.2 Output File Creation. = When a suitable pose is reached, the output
file with the name as specified in the control file is created by pressing the space bar. The file
is generated in a vector format. The transformation data is stored in the header, followed by
3D alignment point locations, then the 3D vector endpoint pairs. A segment of the output

file illustrating the format follows:
Model: ../satmodel/dmsp.geom.nsm.alp

Scale: 0.996811
Rx: 67.381210
Ry: 108.035217
Rz: 170.946991
Tx: 12.613300
Ty: 11.308329

AP: 0 24.570559 -15.408206 -63.325493
AP: 1 -137.169266 92.209892 -26.056511
AP: 2 127.339104 165.023773 42.519070
AP: 3 38.865135 -111.773666 14.746902

-4.198954 26.277088 -23.518766 -5.126214 25.999113 -24.111668
-5.126214 25.999113 -24.111668 -5.625136 25.766003 -25.104317
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-5.625136 25.766003 -25.104317 -5.562035 25.640219 -26.230732
-5.562035 25.640219 -26.230732 -4.953817 25.655464 -27.189091

The output files for complicated objects like the DMSP satellite are rather large and
require several seconds to write. The program may be exited by choosing Close or Quit

under the writesat window menu.

A.?2 Alignment Parameter Eztraction

The matcher program is the main element of the parameter extraction system. It
performs all calculations for determining the alignment parameters that specify the pose of
the satellite. It requires several input files: a control file, specifying the file names of the
required files; a reference file specifying the reference pose of the satellite; three basis images,
for which linear combination coefficients will be generated; and a simulated sensor image, for
which the pose of the satellite will be determined. An optional model file may be supplied

to provide a 3D model on which the extracted parameters may be tested.
A.2.1 Input File Formats.

A.2.1.1 Control File Format. = The control specifies the filenames for all the
input files.

C1: satmaster.in

Cc2:

C3: Master control file for matcher program.
C4:

RE: ref.vec

B1l: basi.vec

B2: bas2.vec

B3: bas3.vec
UM: rand.vec
MD: ../satmodel/dmsp.geom.nsm.alp

A.2.1.2 Image File Format. The image files are generated by the writesat

program, and are of the format described above. In total, five images (1 reference, 3 basis, 1
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simulated sensor) are required. Thus writesat must be run five times to supply the required
data files for the initial execution of matcher. Once the basis and reference image files are
generated for a particular satellite, they may be used repeatedly with different simulated

sensor images.

As noted above, writesat’s output files are actually 3D vector files. The files specified
as images are automatically projected to an orthographic view as they are read in, converting

them to true 2D images.

A.2.1.3 Model File Format. The model file format is the same as that used by
writesat, and is covered in detail above. This file is optional for execution of matcher, but
its inclusion is recommended so that the quality of the extracted parameters can be gauged.
The model is transformed by the extracted parameters, and should match the simulated

sensor image once it is transformed.

A.2.2 Ezecution. The program is launched from a C shell command line using the

following syntax:
matcher filename [-ssize] [-upizels]
where filename is the control file and the follow command line options are available.
-ssize  World coordinate dimensions of matcher window
-upizels Screen coordinate dimensions of matcher window

The program opens windows to display the basis images, simulated sensor image, and

3D model (if supplied). A picture of the SGI screen is provided as Figure 10.

The program provides a pop up menu in the main matcher window. To display the
menu, the menu (right) button is pressed while the focus is in the main matcher window.

Each selection is described below:

A.2.2.1 Calculate Coefficients. Selecting this menu item causes matcher

to calculate the coefficients for the linear combination of the basis images that will form

68




the simulated sensor image. This item is disabled until all the alignment points have been
identified in the sensor image. The coefficients are output to the C shell window from which

matcher was launched.

A.2.2.2 Calculate Parameters.  Selecting this menu item causes matcher to
calculate the alignment parameters that describe the pose of the object in the simulated
sensor image. This item is disabled until all of the alignment points have been set in the

simulated sensor image.

If the parameters are found, they are printed to the C shell window from which matcher
was launched. If no solution is found, an error message is printed. In some cases, a solution
can be found by simply selecting Calculate Parameters again. Usually, the failure to converge
to a parameter set results from inaccurate placement of align.ment points in the sensor image.
The alignment points can sometimes be placed more accurately using the Zoom features
described below. If the alignment points cannot be placed with sufficient accuracy, then the

convergence tolerances may be adjusted.

A.2.2.83 Zoom. The Zoom feature allows the user to enlarge a section of
the simulated sensor image. The user simply selects the portion of the sensor image to be
enlarged by placing a zoom box on the image, then selecting the Zoom In item from the
Zoom sub menu. The zoom box is placed by pressing and holding the left mouse button at
one corner of the area to be enlarged. A magenta cross is displayed to mark the spot where
the button was pressed. Holding the button down, the user drags the cursor across the area
to be enlarged and releasing the button at the diagonally opposite corner of the area. A
magenta zoom box then appears on the image. To prevent warping in the zoomed image,
the zoom box is automatically squared so that it encompasses the entire area selected by the

user.

Selecting Zoom In from the Zoom sub menu enlarges the area surrounded by the zoom

box. The Zoom In item is disabled unless a zoom box has been set by the user.




Selecting Unzoom returns the original view of the entire image.

A.2.2.4 Set Alignment Points.  The Set Alignment Points feature allows the
user to place the alignment points in the simulated sensor image. Selecting Set Alignment
Points causes the display of a submenu which allows the user to set individual points, set the
points to predetermined locations, or clear all the points. The location of a particular point
can be modified by simply choosing to set that point again. When used in combination with

the Zoom feature, the alignment points can be set very accurately.

Red, Green, Yellow, Blue
Selecting Red, Green, Yellow, or Blue from the Set Alignment Points sub menu allows the
user to set or reset the red, green, yellow, or blue alignment point, respectively. After
choosing the point to be set, the user simply click the left button of the mouse when the
tip of the cursor is at the desired location for the alignment point. If the alignment point is

already set, it is reset to the new location. The old location is displayed until the mouse is
clicked.

Auto
This feature sets all points simultaneously to their true locations as specified in the image

file header. Any points which were previously set are reset to the locations specified in the
file header.

Clear
Selecting Clear from the Set Alignment Points sub menu clears any alignment points that

may have been set.

A.2.2.5 Tolerance. This feature allows the user to change the convergence
tolerance used in the extraction of the aligrment parameters. Selecting Tolerance displays a
sub menu from which Increase or Decrease may be selected. The tolerance (tolf and tolx
as described in 4.1) is adjusted up or down by factors of 10. The new setting is displayed in

the C shell window from which matcher was lannched.

70




A.2.26 Quit. Selecting Quit exits the matcher program.

A.8 Performance Analysis

This program, sens calls the numerical routines used by matcher to extract alignment
parameters. Several options allow the variation of extraction parameters such as convergence
tolerance and alignment point error. It processes a fixed set of data (Table 1) so no input files
are required. It outputs a file containing the extracted parameters, any errors introduced,

and rms output errors.

A.3.1 Output File Format. The output file contains a record for each execution of
the alignment extraction routine. Each record contains the extracted parameter set (s, 0.,
6,, 9., t., and t,), rms errors (x, *, and z), and alignment point errors (z, y, and z), giving

a total of twelve elements.

Rimns errors represent the errors between the true positions of the alignments points
and the locations of the alignment points after transformation of the model by the extracted

alignment parameter set.

A.3.2 Ezecution. The program is executed from a C shell window using the

following syntax:

sens outfile [-ttol] [-lloops] [-eerr] [-pvarpi]

The command line options available are as follows:
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-ttol Sets convergence tolerance to tol

Default value = .00001

-lloops  Sets the number of loops to loops

Default value = 10

-eerr Sets introduced error variance to err inches

Default value = 0

-pvarpt Varies alignment point varpt € 1,2,3,4
Default value = 1

If a command line option is not exercised, the default value is used.

Errors are generated at random with a Gaussian distribution.
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Appendiz B. Mathematica Source Code

The following is a listing of the Mathematica code used in modeling the coefficient and

parameter extraction techniques.

four:={{-2,2,2,1},{2,2,2,1},{0,-2,2,1},{0,0,-2,1}}

pt{list_,i_):=Take[list[[i]],3]

rem[num_] :=Mod [N[Abs[num]] ,N[2%Pi]]*Sign[N[num]]

obj[1list_] :=Graphics3D[{{AbsoluteThickness[4],
Line[{pt[list,1],pt[list,2],
ptllist,3],pt{list,4]}]},
{PointSize[0.05],GrayLevel[0.5],Pcint [pt[1list,11]},
{PointSize[0.05],Point[pt[list,2]]},
{PointSize[0.05] ,Point [pt[list,3]]},
{PointSize[0.07],Point[pt(list,4]1]}}]

ortho[list_]:=Graphics([{{AbsoluteThickness[4],
Line[{Take[1ist[[1]],2],Take[1list[[2]],2],
Take[list[[3]],2],Take[list[[4]1],2]}]1},
{PointSize[0.05],GrayLevel[0.5],
Point[Take[1ist[[1]],2]]},
{PointSize[0.05],Point[Take[list[[2]],2]]},
{PointSize[0.05),Point[Take[1ist[[3]],2]]},
{PointSize[0.07] ,Point[Take[list{[4]],2]]1}}]
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rx [theta-] :={{1 no ,O s o} s
{0,Cos[theta] ,Sin[theta], 0},

{0,-Sin[theta],Cos[theta],0},

{0,0,0,1}}

ry[theta_] :={{Cos[theta),0,-Sin[theta],0},

{0,1,0,0},
{Sin[theta],0,Cos[theta], 0},
{09030’1}}

rz[theta_] :={{Cos[theta]l ,Sin[theta],0,0},

{-Sin[theta] ,Cos[theta],0,0},
{0,0,1,0},{0,0,0,1}}

ttlx_,y_1:={{1,0,0,0},
{0,1,0,0},
{0,0,1,0},
{x,y,0,1}}

sc[s_]:={{s,0,0,0},
{0,s,0,0},
{0,0,s,0},
{0,0,0,1}}

SeedRandom(]

sv = 2*Random(];

rxv = Pi*Random(];
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ryv = Pi*Random(];
rzv = Pi*Random(];
ttx = Random(];
tty = Random[];

trans={rx[Pi/6] ,ry[Pi/6],rz[Pi/6],
sc[sv] .rx[rxv] .ry(ryv].rz(rzv].tt(ttx,ttyl};
figs=Table[four.trans[[i]],{i,4}]);

basisx = {Transpose(figs([1]J11([1]],
Transpose(figs[[2]]11([1]],
Transpose([figs[[3]]1([1]],
{1,1,1,1}};

basisy = {Transpose[figs[[1]]][(2]],
Transpose[figs[[2]1]1]1([2]],
Transpose [figs[[3]11]([2]],
{1,1,1,1}};

unknx=Transpose [figs [[4]]][[1]];
unkny=Transpose [figs[[4]11] [[2]];

cx=unknx.Inverse[basisx];

cy=unkny.Inverse[basisy];

ux=Inverse[Transpose[Inverse[basisx]].four].cx;

uy=Inverse[Transpose[Inverse[basisy]].four].cy;

ai[s_,xr_,yr_,zr_] := s*Cos[yr]}*Cos([zr];
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a2{s_,xr_,yr_,zr_] :

a3(s_,xr_,yr_,z2r_] :

bils_,xr_,yr_,2zr_] :
b2[(s_,xr_,yr_,zr_] :

b3(s_,xr_,yr_,zr_] :

s*(Cos[2zr]*Sin[xr]*Sin[yr]-Cos{xr]}*Sin([zr]);

s*(Cos [xr]*Cos[zr}*Sin{yr]+Sin(xr]*Sin(zr]);

s*Cos[yr]*Sin[zr];
s*(Sin[xr]*Sin(yr]*Sin[zr])+Cos(xr])*Cos[zr]);

s*(Cos(xr]*Sin(yr]#Sin(zr]-Cos(zr]*Sin(xr]);

SeedRandom[]
sol=FindRoot [{N[a2[s,xr,yr,zr]]==N[ux[[2]]],
N[a3[s,xr,yr,zr]]
==N[ux([3]]1],
N[b2[s,xr,yr,zr]]
==N[uy[[2]]],
N[b3(s,xr,yr,zr]]==N[uy[(3]]]1},
{s,1+Random([1},
{xr,Random[]*Pi},
{yr,Random[]*Pi},
{zr,Random[J*Pi},
MaxIterations -> 30];

sol

cosol = {N[s /. sol],
rem[xr /. sol],
rem(yr /. sol],
rem[zr /. soll}
N[{ux[[4]],uy([41]}]
N[{sv,rxv,ryv,rzv}]

N[{ttx,tty}]

76




N{{ai(s,xr,yr,zr] /. sol,
a2(s,xr,yr,zr] /. sol,
a3[s,xr,yr,zr] /. sol,

ttx}]

{a1[cos01([[1]],cos01[[2]],cos01[[3]],cos01[[4]]],
a2[cosol[[1]],cos01[[2]],co801[[3]],cos0l[[4]]],
a3[cos01[[1]],cos01[[2]],co801[[3]],cos01[[4]]],
ttx}

N[ux]

N[{bi[s,xr,yr,zr] /. sol,
b2(s,xr,yr,zr] /. sol,
b3[s,xr,yr,zr] /. sol,
tty}]

{b1fcosol[[1]],cos01[[2]],cos01([3]],cos01[[4]]],
b2{cosol[[1]],cos01[[2]],cos01[[3]],cos01[[4]]1],
b3[cosol[[1]],cos01[[2]],cos01[[3]],cos01[[4]]],

tty}

N[uy]
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Appendiz C. Software Reference

The purpose of this appendix is to provide the reader with some insight into the
construction (the word engineering does not necessarily apply) of the software system devel-
oped for this thesis. The execution of the three main components of the system, writesat,

matcher, and sens is covered in the User’s Guide, Appendix A.

Compilation and linking of the programs are handled through the use of a makefile.
For clarity, the makefile is listed below, and each of the main source code files are discussed

in turn.

C.1 Makefile

The following makefile is used for making all three of the programs on a Silicon Graphics

workstation.

NRLIB = /usr/local/lib/libnewnr.a

matcher : matcher.o mysubs.o calcs.o rdfile.o
cc matcher.o mysubs.o calcs.o rdfile.o ${NRLIB} \
primitives.o -1gl_s ~lm -o matcher

matcher.o : matcher.c mysubs.h calcs.h matcher.h
cc -c matcher.c

mysubs.o : mysubs.c
cc -c mysubs.c

calcs.o : calcs.c
c¢ -c calcs.c

rdfile.o : rdfile.c drawsat.h primitives.h
cc -c¢ rdfile.c

writesat : writesat.o primitives.o wprimitives.o readcontrol.o

cc writesat.o primitives.o wprimitives.o readcontrol.o \
-1lgl_s -lm -o writesat
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writesat.o : writesat.c drawsat.h
CC -C writesat.c

primitives.o : primitives.c
cc -c primitives.c

wprimitives.o : wprimitives.c
cc -c wprimitives.c

readcontrol.o : readcontrol.c
c¢ ~c¢ readcontrol.c

sens : sens.o calcs.o calcs.h
cc sens.o calcs.o ${NRLIB} -1m -1gl_s -o sens

sens.o : sens.cC
CC -C sens.cC

C.2 Parameter Extraction: matcher.c

This program takes most of its execution options from the command line. Exercising
the command line option sets global variables pertaining to main window size and scaling

to the specified values. Otherwise the values retain the default values set at declaration.

The balance of execution options are read from the control file. The subroutine
readconfil, contained in the file mysubs.c handles the reading of the control file and returns

the input filenames in its parameter list.

It then opens the required windows. Widow operations are covered in the Graphics
Library Programming Guide and the Graphics Library Windowing and Font Library Pro-
gramming Guide with Font Library Man Pages publications.

Matrices for storing alignment points and basis images are set up using the Numerical
Recipes utilities. Graphical objects are built using the readvec subroutine, contained in

mysubs.c. readvec converts the 3D vector files into 2D vector images.
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Next, the menuing system is initialized. Menuing on the SGI is covered in Graphics

Library Windowing and Font Library Programming Guide with Font Library Man Pages.

The required devices are initialized to the event queue, then the event handling begins.
Each of matcher’s functions is handled as a menu event by the handlemenu subroutine when

the appropriate menu item is selected.

The calculation functions are handled by the coeffs and parms subroutines in the

calcs.c file.

C.3 Supporting Subroutines: mysubs.c

This file contains miscellaneous routines used by matcher. It contains the routines

fatal, readconfil, readvec, drawcross, readref, drawplus, and drawbox.

fatal is used in all programs. It exits the program and prints an error message to the

C shell window when a fatal error occurs.
readconfil reads the control file input to matcher.

readvec reads the vector files created by writesat and converts them to 2D vector

images. The conversion simply ignores the 2 coordinates in the vectors.
drawcross draws the crosshairs used to denote alignment points in the 2D images.
readref is reads the alignment points from the header of the a vector file.
drawplus draws the cross denoting the first corner of a zoom box.

drawbox draws the square denoting a the zoom box.

C.4 Numerical Routines: calcs.c

The routines for calculating the linear combination coefficients and extracting the

parameters are contained in calcs.c.

The routine coeffs is called with the basis matrices and the alignment point positions

in the sensor image, and returns the linear combination coefficients in the parameter list. It
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uses the Lower-Upper decomposition and backsubstitution routines from Numerical Recipes

in C.
seedrand seeds the random number generator with the system time.

parms uses the Numerical Recipes LU decomposition and backsubstitution routines to
find the composite transformation matrix, then calls the Newton-Raphson routine mnewt to

find the alignment parameters.

usrfun contains the alpha and beta equations that describe the system to be solved.
The alpha equations are the partial derivatives of (13) and (14), while the beta equations
are (13) and (14) themselves.

un2pi reduces the rotation alignment parameters so that 0 < 6 < 2.

test2 teststhe equations from (13) and (14) that wére not used in the Newton-Raphson

extraction.

C.5 NSM Reader: rdfile.c

This file contains the routines that read the NSM format model (rdfile) and generate
an SGI graphical object (makemodel).

makemodel generates the global graphical object called model. It calls rdfile.

rdfile reads the specified NSM file into a linked list of primitives. The beginning of
the list is returned in the global variable called sat. Calling dprim begins the traversal of
the list from the point specified as the argument (usually sat). dprim recurses until the

entire list is rendered.

dsat draws the satellite by calling dprim and draws the spherical alignment point

markers.

81




C.6 Image Generation: writesat.c

This file contains the main routine for the program writesat. The control flow of
this program is very simple. During initialization, the execution options are read from the
command line and the control file, the drawing window is initialized, the desired transfor-
mation is placed on the SGI's transformation stack, and the model file is read to a linked
list as described above. The model is then displayed at the specified view. If a change in the
transformation is desired, the new transformation is entered on the transformation stack.
Once the desired view is achieved, the linked list is traversed, but instead of rendering lines
to the screen, the endpoints of the lines are written to a file by the wsat and wprim routines.

These routines are analogous to dsat and dprim described in the previous section.

C.7 Rendering: primitives.c and wprimitives.c

These files contain the the routines that render the NSM primitives to the screen
(primitives.c) or to a file (wprimitives.c). Only the NSM primitives used in the DMSP used
were implemented, and the arguments of each primitive are as defined in the NSM reference

manual (2).

C.8 Performance Analysis: sens.c

This file contains the main routine for sens. The program repeatedly calls the param-

eter extraction routine, parms, calculates the error measures, and outputs its results to a

file.

C.9 Summary

This appendix, taken with the comments in the code, will hopefully provide some
insight into the organization of the software. The reader should bear in mind that the
software exists only to show the utility of the parameter extraction method, and that this is

not a software engineering thesis.
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